Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 70(22): 6658-6669, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35613461

RESUMO

Plant parasitic nematodes (PPNs) develop through three major stages in their life cycle: hatching, infection, and reproduction. Interruption of any of these stages can affect their growth and survival. We used screenhouse pot experiments, laboratory in vitro hatching and mortality assays, and chemical analysis to test the hypothesis that the non-host Asteraceae plant vegetable black-jack (Bidens pilosa) suppresses infection of the PPN Meloidogyne incognita in two susceptible Solanaceae host plants, tomato (Solanum lycopersicum) and black nightshade (S. nigrum). In intercrop and drip pot experiments, B. pilosa significantly reduced the number of galls and egg masses in root-knot nematode (RKN)-susceptible host plants by 3-9-fold compared to controls. Chemical analysis of the most bioactive fraction from the root exudates of B. pilosa identified several classes of compounds, including vitamins, a dicarboxylic acid, amino acids, aromatic acids, and a flavonoid. In in vitro assays, the vitamins and aromatic acids elicited the highest inhibition in egg hatching, whereas ascorbic acid (vitamin) and 2-hydroxybenzoic acid (aromatic acid) elicited strong nematicidal activity against M. incognita, with LC50/48 h values of 12 and 300 ng/µL, respectively. Our results provide insights into how certain non-host plants can be used as companion crops to disrupt PPN infestation.


Assuntos
Solanum lycopersicum , Tylenchoidea , Animais , Produtos Agrícolas , Solanum lycopersicum/parasitologia , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Raízes de Plantas/parasitologia , Verduras , Vitaminas
2.
J Agric Food Chem ; 69(50): 15145-15156, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34882384

RESUMO

Olfactory cues guide plant parasitic nematodes (PPNs) to their host plants. We tested the hypothesis that non-host plant root volatiles repel PPNs. To achieve this, we compared the olfactory responses of infective juveniles (J2s) of the PPN Meloidogyne incognita to four non-host Asteraceae plants, namely, black-jack (Bidens pilosa), pyrethrum (Chrysanthemum cinerariifolium), marigold (Tagetes minuta), and sweet wormwood (Artemisia annua), traditionally used in sub-Saharan Africa for the management of PPNs. Chemical analysis by coupled gas chromatography-mass spectrometry (GC/MS) combined with random forest analysis, followed by behavioral assays, identified the repellents in the root volatiles of B. pilosa, T. minuta, and A. annua as (E)-ß-farnesene and 1,8-cineole, whereas camphor was attractive. In contrast, random forest analysis predicted repellents for C. cinerariifolium and A. annua as ß-patchoulene and isopropyl hexadecanoate. Our results suggested that terpenoids generally account for the repellency of non-host Asteraceae plants used in PPN management.


Assuntos
Asteraceae , Tylenchoidea , Animais , Cromatografia Gasosa-Espectrometria de Massas , Doenças das Plantas , Raízes de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...